Emzano Signing SDK

A signing SDK that generates non-exportable P-256/RSA keys, builds PKCS#10 CSRs with user
authentication, calls a backend to issue certificates, and caches certificate chains securely.
Android is a pure Android SDK; iOS is a native Swift package designed for wrapper-friendly APIs
(React Native / Capacitor later).

Modules

e sdk-android (Android SDK): core API, error model, network abstractions, crypto + CSR
+ secure storage, and Android wrapper (AndroidSigningSdk).

e sdk-1ios (Swift package): native iOS SDK (SigningSdk), Keychain crypto + CSR,
URLSession networking, secure storage.

e sample-android (App): Demonstrates initialization, key generation, CSR creation, mock
certificate issuance, and cache reading with a minimal Ul.

e sample-ios (SwiftUl app): Demonstrates init/key/CSR/issue/cached cert using the Swift
package with a mock network client and token provider.

Android overview

o Keys: EC P-256 generated in Android Keystore
with SHA256withECDSA. AuthPolicy.PerUse or AuthPolicy.TimeWindow(seco
nds) configure user authentication requirements.

e Biometrics: BiometricPrompt Ul strings must be supplied by the caller
(BiometricUiConfig). The SDK never hardcodes prompt strings.

e CSR: Built with BouncyCastle; signature authorized via BiometricPrompt on
a FragmentActivity.

e Storage: Certificate chain cached via EncryptedSharedPreferences per alias.

¢ Networking: Ktor client with optional OkHttp certificate pinning
(set PinningConfig in SdkConfig).

Android wrapper (AndroidSigningSdk)

val sdk = AndroidSigningSdk(context)
val config = SdkConfig(
baseUrl = "https://api.example.com",
pinningConfig = PinningConfig(host = "api.example.com", sha256Pins
= listOf("pinl", "pin2"))
)

sdk.initialize(config)

Biometric Ul config (from app strings):



val ui = BiometricUiConfig(
title = getString(R.string.biometric_title),
subtitle = getString(R.string.biometric_subtitle),
description = getString(R.string.biometric_description),
negativeButtonText = getString(R.string.biometric_negative)

)

Key & CSR operations (require FragmentActivity for BiometricPrompt):

sdk.generateKeyPair(this, alias, AuthPolicy.PerUse, ui,
KeyAlgorithm.RSA_2048)

val csr = sdk.createCsr(this, alias, subject, CsrExtensions(), ui)
val signature = sdk.signDigest(this, alias, digestBase64,
DigestAlgorithm.SHA256, ui)

Issuing and caching certificates (async issue + polling):

val tokenProvider = object : TokenProvider {
override suspend fun getAccessToken() = "access-token"
override suspend fun refreshAccessToken() = null // or refreshed
token
b
val request = IssueCertificateRequest(
enName = "Ali",
enLastName = "Ahmadi",
postalCode = "1234567890",
city = "Tehran",
provinceName = "Tehran",
base64Csr = csrPem.toPemBase64()
)
val certResult = sdk.issueCertificate(alias, tokenProvider, request)
val cached = sdk.getCachedCertificate(alias)

Helper to convert PEM CSR into base64 payload:

private fun String.toPemBase64(): String =

.replace("\\s".toRegex(), "")

Polling starts after 10 seconds and repeats every 2 seconds by default. Override
via SdkConfig.pollingConfig or pass a



custom CertificatePollingConfig to issueCertificate. Configure endpoints
with SdkConfig. issueEndpoint and SdkConfig.checkEndpoint.

SdkResult. Ok contains the value; SdkResult.Err carries SAKError (JSON friendly
code/message/metadata). Error codes

include KEY_NOT_FOUND, KEY_INVALIDATED, KEYSTORE_UNAVAILABLE, BIOMETRIC_FAILE
D, BIOMETRIC_CANCELED, NETWORK_ERROR, AUTH_REQUIRED, SERVER_ERROR, CSR_BUILD_
ERROR, CERT_CACHE_ERROR, INVALID_ ARGUMENT, INTERNAL_ERROR

iOS overview (native Swift)

o Keys: EC P-256 or RSA 2048 stored in Keychain; EC uses Secure Enclave on device
with kSecAccessControlPrivateKeyUsage and user presence.
e Biometrics: BiometricPromptConfig requires a non-
empty localizedReason provided by the app.
e CSR: Built with manual ASN.1 DER encoding
and SecKeyCreateSignature (SHA256withECDSA or SHA256withRSA), wrapped as
PEM.
e Storage: Certificate cache stored in Keychain (JSON payload per alias).
e Networking: URLSession with optional SHA256 certificate pinning
(set PinningConfig in SdkConfig).

iOS usage

import EmzanoSigning

let sdk = SigningSdk()
let config = SdkConfig(baseUrl: "https://api.example.com")
let _ = await sdk.initialize(config: config)

let prompt = BiometricPromptConfig(localizedReason: "Confirm to sign
request")

let _ = await sdk.generateKeyPair(alias: "ios-key", authPolicy:
.perUse, algorithm: .rsa2048)

let csr = await sdk.createCsr(alias: "ios-key", subject:
SubjectDn(commonName: "User"), extensions: CsrExtensions(), prompt:
prompt)

let signature = await sdk.signDigest(alias: "ios-key", digestBase64:
digestBase64, digestAlgorithm: .sha256, prompt: prompt)

let request = IssueCertificateRequest(
enName: "Ali",
enLastName: "Ahmadi",
postalCode: "1234567890",



city: "Tehran",
provinceName: "Tehran",
base64Csr: csrPem.toPemBase64()
)
let cert = await sdk.issueCertificate(alias: "ios-key", tokenProvider:
tokenProvider, request: request)
private extension String {
func toPemBase64() —> String {

return replacingOccurrences(of: "————— BEGIN CERTIFICATE
REQUEST————- ", with: "")
.replacingOccurrences(of: "———— END CERTIFICATE REQUEST———-
=", with: "")
.replacingOccurrences(of: '"\\s", with: "", options:
.regularExpression)

}

Sample apps

e Android: launch sample—android. Buttons: initialize, generate key, create CSR, issue
certificate (mock client), show cached certificate. Uses BiometricUiConfig strings
from resources; mock backend returns dummy cert chain.

e iOS: open sample—-ios/SamplelosApp.xcodeproj and run the SwiftUl app. The
project references the local Swift package at sdk—1i0s. Buttons mirror Android flow;
uses Simp leTokenProvider and MockNetworkClient for demo cert
issuance/caching.

Tests

e sdk-android test: verifies auth-refresh state machine and caching behavior.
e sdk-android androidTest: basic keystore generation and CSR failure path without an
activity (ensures graceful error mapping).

Building

Use the bundled Gradle wrapper for Android:

./gradlew :sample-android:installDebug
Requires JDK 17 and Android SDK with compileSdk 34.

For iOS sample:



e Open sample-ios/SampleIlosApp.xcodeproj
e Build/run on iOS 14+ simulator or device



