
Emzano Signing SDK
A signing SDK that generates non-exportable P-256/RSA keys, builds PKCS#10 CSRs with user
authentication, calls a backend to issue certificates, and caches certificate chains securely.
Android is a pure Android SDK; iOS is a native Swift package designed for wrapper-friendly APIs
(React Native / Capacitor later).

Modules
• sdk-android (Android SDK): core API, error model, network abstractions, crypto + CSR

+ secure storage, and Android wrapper (AndroidSigningSdk).
• sdk-ios (Swift package): native iOS SDK (SigningSdk), Keychain crypto + CSR,

URLSession networking, secure storage.
• sample-android (App): Demonstrates initialization, key generation, CSR creation, mock

certificate issuance, and cache reading with a minimal UI.
• sample-ios (SwiftUI app): Demonstrates init/key/CSR/issue/cached cert using the Swift

package with a mock network client and token provider.

Android overview
• Keys: EC P-256 generated in Android Keystore

with SHA256withECDSA. AuthPolicy.PerUse or AuthPolicy.TimeWindow(seco
nds) configure user authentication requirements.

• Biometrics: BiometricPrompt UI strings must be supplied by the caller
(BiometricUiConfig). The SDK never hardcodes prompt strings.

• CSR: Built with BouncyCastle; signature authorized via BiometricPrompt on
a FragmentActivity.

• Storage: Certificate chain cached via EncryptedSharedPreferences per alias.
• Networking: Ktor client with optional OkHttp certificate pinning

(set PinningConfig in SdkConfig).

Android wrapper (AndroidSigningSdk)

val sdk = AndroidSigningSdk(context)
val config = SdkConfig(
 baseUrl = "https://api.example.com",
 pinningConfig = PinningConfig(host = "api.example.com", sha256Pins
= listOf("pin1", "pin2"))
)
sdk.initialize(config)

Biometric UI config (from app strings):

val ui = BiometricUiConfig(
 title = getString(R.string.biometric_title),
 subtitle = getString(R.string.biometric_subtitle),
 description = getString(R.string.biometric_description),
 negativeButtonText = getString(R.string.biometric_negative)
)

Key & CSR operations (require FragmentActivity for BiometricPrompt):

sdk.generateKeyPair(this, alias, AuthPolicy.PerUse, ui,
KeyAlgorithm.RSA_2048)
val csr = sdk.createCsr(this, alias, subject, CsrExtensions(), ui)
val signature = sdk.signDigest(this, alias, digestBase64,
DigestAlgorithm.SHA256, ui)

Issuing and caching certificates (async issue + polling):

val tokenProvider = object : TokenProvider {
 override suspend fun getAccessToken() = "access-token"
 override suspend fun refreshAccessToken() = null // or refreshed
token
}
val request = IssueCertificateRequest(
 enName = "Ali",
 enLastName = "Ahmadi",
 postalCode = "1234567890",
 city = "Tehran",
 provinceName = "Tehran",
 base64Csr = csrPem.toPemBase64()
)
val certResult = sdk.issueCertificate(alias, tokenProvider, request)
val cached = sdk.getCachedCertificate(alias)

Helper to convert PEM CSR into base64 payload:

private fun String.toPemBase64(): String =
 replace("-----BEGIN CERTIFICATE REQUEST-----", "")
 .replace("-----END CERTIFICATE REQUEST-----", "")
 .replace("\\s".toRegex(), "")

Polling starts after 10 seconds and repeats every 2 seconds by default. Override
via SdkConfig.pollingConfig or pass a

custom CertificatePollingConfig to issueCertificate. Configure endpoints
with SdkConfig.issueEndpoint and SdkConfig.checkEndpoint.

SdkResult.Ok contains the value; SdkResult.Err carries SdkError (JSON friendly
code/message/metadata). Error codes
include KEY_NOT_FOUND, KEY_INVALIDATED, KEYSTORE_UNAVAILABLE, BIOMETRIC_FAILE
D, BIOMETRIC_CANCELED, NETWORK_ERROR, AUTH_REQUIRED, SERVER_ERROR, CSR_BUILD_
ERROR, CERT_CACHE_ERROR, INVALID_ARGUMENT, INTERNAL_ERROR.

iOS overview (native Swift)
• Keys: EC P-256 or RSA 2048 stored in Keychain; EC uses Secure Enclave on device

with kSecAccessControlPrivateKeyUsage and user presence.
• Biometrics: BiometricPromptConfig requires a non-

empty localizedReason provided by the app.
• CSR: Built with manual ASN.1 DER encoding

and SecKeyCreateSignature (SHA256withECDSA or SHA256withRSA), wrapped as
PEM.

• Storage: Certificate cache stored in Keychain (JSON payload per alias).
• Networking: URLSession with optional SHA256 certificate pinning

(set PinningConfig in SdkConfig).

iOS usage

import EmzanoSigning

let sdk = SigningSdk()
let config = SdkConfig(baseUrl: "https://api.example.com")
let _ = await sdk.initialize(config: config)

let prompt = BiometricPromptConfig(localizedReason: "Confirm to sign
request")
let _ = await sdk.generateKeyPair(alias: "ios-key", authPolicy:
.perUse, algorithm: .rsa2048)
let csr = await sdk.createCsr(alias: "ios-key", subject:
SubjectDn(commonName: "User"), extensions: CsrExtensions(), prompt:
prompt)
let signature = await sdk.signDigest(alias: "ios-key", digestBase64:
digestBase64, digestAlgorithm: .sha256, prompt: prompt)

let request = IssueCertificateRequest(
 enName: "Ali",
 enLastName: "Ahmadi",
 postalCode: "1234567890",

 city: "Tehran",
 provinceName: "Tehran",
 base64Csr: csrPem.toPemBase64()
)
let cert = await sdk.issueCertificate(alias: "ios-key", tokenProvider:
tokenProvider, request: request)
private extension String {
 func toPemBase64() -> String {
 return replacingOccurrences(of: "-----BEGIN CERTIFICATE
REQUEST-----", with: "")
 .replacingOccurrences(of: "-----END CERTIFICATE REQUEST----
-", with: "")
 .replacingOccurrences(of: "\\s", with: "", options:
.regularExpression)
 }
}

Sample apps
• Android: launch sample-android. Buttons: initialize, generate key, create CSR, issue

certificate (mock client), show cached certificate. Uses BiometricUiConfig strings
from resources; mock backend returns dummy cert chain.

• iOS: open sample-ios/SampleIosApp.xcodeproj and run the SwiftUI app. The
project references the local Swift package at sdk-ios. Buttons mirror Android flow;
uses SimpleTokenProvider and MockNetworkClient for demo cert
issuance/caching.

Tests
• sdk-android test: verifies auth-refresh state machine and caching behavior.
• sdk-android androidTest: basic keystore generation and CSR failure path without an

activity (ensures graceful error mapping).

Building
Use the bundled Gradle wrapper for Android:

./gradlew :sample-android:installDebug

Requires JDK 17 and Android SDK with compileSdk 34.

For iOS sample:

• Open sample-ios/SampleIosApp.xcodeproj
• Build/run on iOS 14+ simulator or device

